今天用实例总结一下group by的用法。
归纳一下:group by:ALL ,Cube,RollUP,Compute,Compute by
创建数据脚本
Create Table SalesInfo
(Ctiy nvarchar(50),
OrderDate datetime,
OrderID int
)
insert into SalesInfo
select N\'北京\',\'2014-06-09\',1001
union all
select N\'北京\',\'2014-08-09\',1002
union all
select N\'北京\',\'2013-10-09\',1009
union all
select N\'大连\',\'2013-08-09\',4001
union all
select N\'大连\',\'2013-10-09\',4002
union all
select N\'大连\',\'2013-05-12\',4003
union all
select N\'大连\',\'2014-11-11\',4004
union all
select N\'大连\',\'2014-12-11\',4005
首先执行以下脚本:
select Ctiy,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy
with cube
可以看到多出了一行 是对所有的订单数的汇总
下一个脚本:
select Ctiy,Year(OrderDate) as OrderYear,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy,Year(OrderDate)
with cube
可以看出来对分组中的维度都进行了汇总,并且还有一个订单的总和
下一个脚本(注意出现了rollup):
select Ctiy,Year(OrderDate) as OrderYear,count(OrderID) as OrderCount
from
SalesInfo
group by Ctiy,Year(OrderDate)
with rollup
使用rollup会对group by列出的第一个分组字段进行汇总运算
下一个脚本:
select Ctiy,count(OrderID) as OrderCount
from
SalesInfo
where
Ctiy = N\'大连\'
group by all Ctiy
我们会看到 使用group by all 后,不符合条件的城市也会出现,只是订单数是零
需要注意的是 All 不能和 cube 和 rollup一起使用,和having一起使用的话,All的功能会失效.
下一个脚本:
select Ctiy,orderdate,orderid
from
SalesInfo
compute count(orderid)
显示了两个结果集,一个是订单结果集,一个是订单总数结果集
最后一个脚本:
select Ctiy,orderdate,orderid
from
SalesInfo
order by Ctiy
compute count(orderid) by Ctiy
按照不同的城市,分别显示该城市的订单信息,一个显示该城市的所有订单数量
就先说这些了.
本文地址:https://www.stayed.cn/item/9238
转载请注明出处。
本站部分内容来源于网络,如侵犯到您的权益,请 联系我