C语言将数组中元素的数排序输出的相关问题解决

前端技术 2023/09/02 C++

 问题描述:输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。例如输入数组{32,  321},则输出这两个能排成的最小数字32132。请给出解决问题的算法,并证明该算法。
      思路:先将整数数组转为字符串数组,然后字符串数组进行排序,最后依次输出字符串数组即可。这里注意的是字符串的比较函数需要重新定义,不是比较a和b,而是比较ab与 ba。如果ab < ba,则a < b;如果ab > ba,则a > b;如果ab = ba,则a = b。比较函数的定义是本解决方案的关键。
      证明:为什么这样排个序就可以了呢?简单证明一下。根据算法,如果a < b,那么a排在b前面,否则b排在a前面。可利用反证法,假设排成的最小数字为xxxxxx,并且至少存在一对字符串满足这个关系:a > b,但是在组成的数字中a排在b前面。根据a和b出现的位置,分三种情况考虑:
      (1)xxxxab,用ba代替ab可以得到xxxxba,这个数字是小于xxxxab,与假设矛盾。因此排成的最小数字中,不存在上述假设的关系。
      (2)abxxxx,用ba代替ab可以得到baxxxx,这个数字是小于abxxxx,与假设矛盾。因此排成的最小数字中,不存在上述假设的关系。
      (3)axxxxb,这一步证明麻烦了一点。可以将中间部分看成一个整体ayb,则有ay < ya,yb < by成立。将ay和by表示成10进制数字形式,则有下述关系式,这里a,y,b的位数分别为n,m,k。
        关系1: ay < ya => a * 10^m + y < y * 10^n + a => a * 10^m - a < y * 10^n - y => a( 10^m - 1)/( 10^n - 1) < y
        关系2: yb < by => y * 10^k + b < b * 10^m + y => y * 10^k - y < b * 10^m - b => y < b( 10^m -1)/( 10^k -1)
        关系3: a( 10^m - 1)/( 10^n - 1) < y < b( 10^m -1)/( 10^k -1)  => a/( 10^n - 1)< b/( 10^k -1) => a*10^k - a < b * 10^n - b =>a*10^k + b < b * 10^n + a => a < b
       这与假设a > b矛盾。因此排成的最小数字中,不存在上述假设的关系。
       综上所述,得出假设不成立,从而得出结论:对于排成的最小数字,不存在满足下述关系的一对字符串:a > b,但是在组成的数字中a出现在b的前面。从而得出算法是正确的。
      参考代码:

//重新定义比较函数对象 
struct compare 
{ 
 bool operator() (const string &src1, const string &src2) 
 { 
  string s1 = src1 + src2; 
  string s2 = src2 + src1; 
  return s1 < s2; //升序排列,如果改为s1 > s2则为逆序排列 
 } 
}; 
//函数功能 : 把数组排成最小的数 
//函数参数 : pArray为数组,num为数组元素个数 
//返回值 : 无 
void ComArrayMin(int *pArray, int num) 
{ 
 int i; 
 string *pStrArray = new string[num]; 
 
 for(i = 0; i < num; i++) //将数字转换为字符串 
 {  
  stringstream stream; 
  stream<<pArray[i]; 
  stream>>pStrArray[i]; 
 } 
 
 sort(pStrArray, pStrArray + num, compare()); //字符串数组排序 
 
 for(i = 0; i < num; i++) //打印字符串数组 
  cout<<pStrArray[i]; 
 cout<<endl; 
 
 delete [] pStrArray; 
} 

本文地址:https://www.stayed.cn/item/3356

转载请注明出处。

本站部分内容来源于网络,如侵犯到您的权益,请 联系我

我的博客

人生若只如初见,何事秋风悲画扇。