使用wait()与notify()实现线程间协作
1. wait()与notify()/notifyAll()
调用sleep()和yield()的时候锁并没有被释放,而调用wait()将释放锁。这样另一个任务(线程)可以获得当前对象的锁,从而进入它的synchronized方法中。可以通过notify()/notifyAll(),或者时间到期,从wait()中恢复执行。
只能在同步控制方法或同步块中调用wait()、notify()和notifyAll()。如果在非同步的方法里调用这些方法,在运行时会抛出IllegalMonitorStateException异常。
2.模拟单个线程对多个线程的唤醒
模拟线程之间的协作。Game类有2个同步方法prepare()和go()。标志位start用于判断当前线程是否需要wait()。Game类的实例首先启动所有的Athele类实例,使其进入wait()状态,在一段时间后,改变标志位并notifyAll()所有处于wait状态的Athele线程。
Game.java
package concurrency; import java.util.Collection; import java.util.Collections; import java.util.HashSet; import java.util.Iterator; import java.util.Set; class Athlete implements Runnable { private final int id; private Game game; public Athlete(int id, Game game) { this.id = id; this.game = game; } public boolean equals(Object o) { if (!(o instanceof Athlete)) return false; Athlete athlete = (Athlete) o; return id == athlete.id; } public String toString() { return \"Athlete<\" + id + \">\"; } public int hashCode() { return new Integer(id).hashCode(); } public void run() { try { game.prepare(this); } catch (InterruptedException e) { System.out.println(this + \" quit the game\"); } } } public class Game implements Runnable { private Set<Athlete> players = new HashSet<Athlete>(); private boolean start = false; public void addPlayer(Athlete one) { players.add(one); } public void removePlayer(Athlete one) { players.remove(one); } public Collection<Athlete> getPlayers() { return Collections.unmodifiableSet(players); } public void prepare(Athlete athlete) throws InterruptedException { System.out.println(athlete + \" ready!\"); synchronized (this) { while (!start) wait(); if (start) System.out.println(athlete + \" go!\"); } } public synchronized void go() { notifyAll(); } public void ready() { Iterator<Athlete> iter = getPlayers().iterator(); while (iter.hasNext()) new Thread(iter.next()).start(); } public void run() { start = false; System.out.println(\"Ready......\"); System.out.println(\"Ready......\"); System.out.println(\"Ready......\"); ready(); start = true; System.out.println(\"Go!\"); go(); } public static void main(String[] args) { Game game = new Game(); for (int i = 0; i < 10; i++) game.addPlayer(new Athlete(i, game)); new Thread(game).start(); } }
结果:
Ready...... Ready...... Ready...... Athlete<0> ready! Athlete<1> ready! Athlete<2> ready! Athlete<3> ready! Athlete<4> ready! Athlete<5> ready! Athlete<6> ready! Athlete<7> ready! Athlete<8> ready! Athlete<9> ready! Go! Athlete<9> go! Athlete<8> go! Athlete<7> go! Athlete<6> go! Athlete<5> go! Athlete<4> go! Athlete<3> go! Athlete<2> go! Athlete<1> go! Athlete<0> go!
3.模拟忙等待过程
MyObject类的实例是被观察者,当观察事件发生时,它会通知一个Monitor类的实例(通知的方式是改变一个标志位)。而此Monitor类的实例是通过忙等待来不断的检查标志位是否变化。
BusyWaiting.java
import java.util.concurrent.TimeUnit; class MyObject implements Runnable { private Monitor monitor; public MyObject(Monitor monitor) { this.monitor = monitor; } public void run() { try { TimeUnit.SECONDS.sleep(3); System.out.println(\"i\'m going.\"); monitor.gotMessage(); } catch (InterruptedException e) { e.printStackTrace(); } } } class Monitor implements Runnable { private volatile boolean go = false; public void gotMessage() throws InterruptedException { go = true; } public void watching() { while (go == false) ; System.out.println(\"He has gone.\"); } public void run() { watching(); } } public class BusyWaiting { public static void main(String[] args) { Monitor monitor = new Monitor(); MyObject o = new MyObject(monitor); new Thread(o).start(); new Thread(monitor).start(); } }
结果:
i\'m going. He has gone.
4.使用wait()与notify()改写上面的例子
下面的例子通过wait()来取代忙等待机制,当收到通知消息时,notify当前Monitor类线程。
Wait.java
package concurrency.wait; import java.util.concurrent.TimeUnit; class MyObject implements Runnable { private Monitor monitor; public MyObject(Monitor monitor) { this.monitor = monitor; }
定时启动线程
这里提供两种在指定时间后启动线程的方法。一是通过java.util.concurrent.DelayQueue实现;二是通过java.util.concurrent.ScheduledThreadPoolExecutor实现。
1. java.util.concurrent.DelayQueue
类DelayQueue是一个无界阻塞队列,只有在延迟期满时才能从中提取元素。它接受实现Delayed接口的实例作为元素。
<<interface>>Delayed.java
package java.util.concurrent; import java.util.*; public interface Delayed extends Comparable<Delayed> { long getDelay(TimeUnit unit); }
getDelay()返回与此对象相关的剩余延迟时间,以给定的时间单位表示。此接口的实现必须定义一个 compareTo 方法,该方法提供与此接口的 getDelay 方法一致的排序。
DelayQueue队列的头部是延迟期满后保存时间最长的 Delayed 元素。当一个元素的getDelay(TimeUnit.NANOSECONDS) 方法返回一个小于等于 0 的值时,将发生到期。
2.设计带有时间延迟特性的队列
类DelayedTasker维护一个DelayQueue<DelayedTask> queue,其中DelayedTask实现了Delayed接口,并由一个内部类定义。外部类和内部类都实现Runnable接口,对于外部类来说,它的run方法是按定义的时间先后取出队列中的任务,而这些任务即内部类的实例,内部类的run方法定义每个线程具体逻辑。
这个设计的实质是定义了一个具有时间特性的线程任务列表,而且该列表可以是任意长度的。每次添加任务时指定启动时间即可。
DelayedTasker.java
package com.zj.timedtask; import static java.util.concurrent.TimeUnit.SECONDS; import static java.util.concurrent.TimeUnit.NANOSECONDS; import java.util.Collection; import java.util.Collections; import java.util.Random; import java.util.concurrent.DelayQueue; import java.util.concurrent.Delayed; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class DelayedTasker implements Runnable { DelayQueue<DelayedTask> queue = new DelayQueue<DelayedTask>(); public void addTask(DelayedTask e) { queue.put(e); } public void removeTask() { queue.poll(); } public Collection<DelayedTask> getAllTasks() { return Collections.unmodifiableCollection(queue); } public int getTaskQuantity() { return queue.size(); } public void run() { while (!queue.isEmpty()) try { queue.take().run(); } catch (InterruptedException e) { System.out.println(\"Interrupted\"); } System.out.println(\"Finished DelayedTask\"); } public static class DelayedTask implements Delayed, Runnable { private static int counter = 0; private final int id = counter++; private final int delta; private final long trigger; public DelayedTask(int delayInSeconds) { delta = delayInSeconds; trigger = System.nanoTime() + NANOSECONDS.convert(delta, SECONDS); } public long getDelay(TimeUnit unit) { return unit.convert(trigger - System.nanoTime(), NANOSECONDS); } public int compareTo(Delayed arg) { DelayedTask that = (DelayedTask) arg; if (trigger < that.trigger) return -1; if (trigger > that.trigger) return 1; return 0; } public void run() { //run all that you want to do System.out.println(this); } public String toString() { return \"[\" + delta + \"s]\" + \"Task\" + id; } } public static void main(String[] args) { Random rand = new Random(); ExecutorService exec = Executors.newCachedThreadPool(); DelayedTasker tasker = new DelayedTasker(); for (int i = 0; i < 10; i++) tasker.addTask(new DelayedTask(rand.nextInt(5))); exec.execute(tasker); exec.shutdown(); } }
结果:
[0s]Task 1 [0s]Task 2 [0s]Task 3 [1s]Task 6 [2s]Task 5 [3s]Task 8 [4s]Task 0 [4s]Task 4 [4s]Task 7 [4s]Task 9 Finished DelayedTask
3. java.util.concurrent.ScheduledThreadPoolExecutor
该类可以另行安排在给定的延迟后运行任务(线程),或者定期(重复)执行任务。在构造子中需要知道线程池的大小。最主要的方法是:
[1] schedule
public ScheduledFuture<?> schedule(Runnable command, long delay,TimeUnit unit)
创建并执行在给定延迟后启用的一次性操作。
指定者:
-接口 ScheduledExecutorService 中的 schedule;
参数:
-command - 要执行的任务 ;
-delay - 从现在开始延迟执行的时间 ;
-unit - 延迟参数的时间单位 ;
返回:
-表示挂起任务完成的 ScheduledFuture,并且其 get() 方法在完成后将返回 null。
[2] scheduleAtFixedRate
public ScheduledFuture<?> scheduleAtFixedRate(
Runnable command,long initialDelay,long period,TimeUnit unit)
创建并执行一个在给定初始延迟后首次启用的定期操作,后续操作具有给定的周期;也就是将在 initialDelay 后开始执行,然后在 initialDelay+period 后执行,接着在 initialDelay + 2 * period 后执行,依此类推。如果任务的任何一个执行遇到异常,则后续执行都会被取消。否则,只能通过执行程序的取消或终止方法来终止该任务。如果此任务的任何一个执行要花费比其周期更长的时间,则将推迟后续执行,但不会同时执行。
指定者:
-接口 ScheduledExecutorService 中的 scheduleAtFixedRate;
参数:
-command - 要执行的任务 ;
-initialDelay - 首次执行的延迟时间 ;
-period - 连续执行之间的周期 ;
-unit - initialDelay 和 period 参数的时间单位 ;
返回:
-表示挂起任务完成的 ScheduledFuture,并且其 get() 方法在取消后将抛出异常。
4.设计带有时间延迟特性的线程执行者
类ScheduleTasked关联一个ScheduledThreadPoolExcutor,可以指定线程池的大小。通过schedule方法知道线程及延迟的时间,通过shutdown方法关闭线程池。对于具体任务(线程)的逻辑具有一定的灵活性(相比前一中设计,前一种设计必须事先定义线程的逻辑,但可以通过继承或装饰修改线程具体逻辑设计)。
ScheduleTasker.java
package com.zj.timedtask; import java.util.concurrent.ScheduledThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class ScheduleTasker { private int corePoolSize = 10; ScheduledThreadPoolExecutor scheduler; public ScheduleTasker() { scheduler = new ScheduledThreadPoolExecutor(corePoolSize); } public ScheduleTasker(int quantity) { corePoolSize = quantity; scheduler = new ScheduledThreadPoolExecutor(corePoolSize); } public void schedule(Runnable event, long delay) { scheduler.schedule(event, delay, TimeUnit.SECONDS); } public void shutdown() { scheduler.shutdown(); } public static void main(String[] args) { ScheduleTasker tasker = new ScheduleTasker(); tasker.schedule(new Runnable() { public void run() { System.out.println(\"[1s]Task 1\"); } }, 1); tasker.schedule(new Runnable() { public void run() { System.out.println(\"[2s]Task 2\"); } }, 2); tasker.schedule(new Runnable() { public void run() { System.out.println(\"[4s]Task 3\"); } }, 4); tasker.schedule(new Runnable() { public void run() { System.out.println(\"[10s]Task 4\"); } }, 10); tasker.shutdown(); } }
结果:
[1s]Task 1 [2s]Task 2 [4s]Task 3 [10s]Task 4 public void run() { try { TimeUnit.SECONDS.sleep(3); System.out.println(\"i\'m going.\"); monitor.gotMessage(); } catch (InterruptedException e) { e.printStackTrace(); } } }
class Monitor implements Runnable { private volatile boolean go = false; public synchronized void gotMessage() throws InterruptedException { go = true; notify(); } public synchronized void watching() throws InterruptedException { while (go == false) wait(); System.out.println(\"He has gone.\"); } public void run() { try { watching(); } catch (InterruptedException e) { e.printStackTrace(); } } } public class Wait { public static void main(String[] args) { Monitor monitor = new Monitor(); MyObject o = new MyObject(monitor); new Thread(o).start(); new Thread(monitor).start(); } }
结果:
i\'m going. He has gone.
本文地址:https://www.stayed.cn/item/20908
转载请注明出处。
本站部分内容来源于网络,如侵犯到您的权益,请 联系我