尽管排列组合是生活中经常遇到的问题,可在程序设计时,不深入思考或者经验不足都让人无从下手。由于排列组合问题总是先取组合再排列,并且单纯的排列问题相对简单,所以本文仅对组合问题的实现进行详细讨论。以在n个数中选取m(0<m<=n)个数为例,问题可分解为:
1. 首先从n个数中选取编号最大的数,然后在剩下的n-1个数里面选取m-1个数,直到从n-(m-1)个数中选取1个数为止。
2. 从n个数中选取编号次小的一个数,继续执行1步,直到当前可选编号最大的数为m。
很明显,上述方法是一个递归的过程,也就是说用递归的方法可以很干净利索地求得所有组合。
下面是递归方法的实现:
下面是非递归的回溯方法的实现:
int* order = new int[m+1];
for(int i=0; i<=m; i++)
order[i] = i-1; // 注意这里order[0]=-1用来作为循环判断标识
int count = 0;
int k = m;
bool flag = true; // 标志找到一个有效组合
while(order[0] == -1)
{
if(flag) // 输出符合要求的组合
{
for(i=1; i<=m; i++)
cout << a[order[i]] << \" \";
cout << endl;
count++;
flag = false;
}
order[k]++; // 在当前位置选择新的数字
if(order[k] == n) // 当前位置已无数字可选,回溯
{
order[k--] = 0;
continue;
}
if(k < m) // 更新当前位置的下一位置的数字
{
order[++k] = order[k-1];
continue;
}
if(k == m)
flag = true;
}
delete[] order;
return count;
}
本文地址:https://www.stayed.cn/item/18132
转载请注明出处。
本站部分内容来源于网络,如侵犯到您的权益,请 联系我